
B6:	Mongoose	and	Information	Update	 1	

COM644 Full-Stack Web and App Development

Practical B6: Mongoose and Information Update

Aims	
• To	demonstrate	the	provision	of	multiple	endpoints	in	a	single	API	route	
• To	implement	Mongoose	controller	logic	to	handle	a	POST	request	to	

add	documents	to	a	MongoDB	database	
• To	demonstrate	the	addition	of	sub-documents	to	a	collection	
• To	implement	Mongoose	controller	logic	to	handle	a	PUT	request	to	

update	a	document	in	a	MongoDB	database	
• To	demonstrate	the	update	of	sub-documents	in	a	collection	
• To	implement	Mongoose	controller	logic	to	handle	a	DELETE	request	to	

remove	a	document	from	a	MongoDB	database	
• To	demonstrate	the	deletion	of	sub-documents	from	a	collection	

Contents	
B6.1	CREATING	DATABASE	CONTENT	...	2	

B6.1.1	CREATING	A	NEW	DOCUMENT	..	2	
B6.1.2	CREATING	A	NEW	SUB-DOCUMENT	...	6	

B6.2	UPDATING	DATABASE	CONTENT	...	12	
B6.2.1	UPDATING	AN	EXISTING	DOCUMENT	...	12	
B6.2.2	UPDATING	AN	EXISTING	SUB-DOCUMENT	...	17	

B6.3	DELETING	DATABASE	CONTENT	..	20	
B6.3.1	DELETING	A	TOP-LEVEL	DOCUMENT	..	21	
B6.3.2	DELETING	A	SUB-DOCUMENT	...	22	

B6:	Mongoose	and	Information	Update	 2	

B6.1	Creating	database	content		

In	the	previous	practical	we	examined	the	use	of	Mongoose	in	implementing	controllers	to	
retrieve	documents	and	sub-documents	from	MongoDB	databases.		In	this	session,	we	will	
complete	the	development	of	our	RESTful	API	for	the	WeMeanBusiness	sample	application	
by	providing	routes	and	controllers	to	update	database	contents.	
	
	
B6.1.1	Creating	a	new	document	
	
According	to	our	data	model	specified	in	Practical	B4,	a	document	describing	a	business	has	
the	following	structure:	
	
	

Field	 Type	(and	notes)	

name	 String	(required)	

stars	 Number	(range	0-5,	default	value	0)	

city	 String	

review_count	 Number	

categories	 Array	of	Strings	

reviews	 Array	of	Reviews	

location	 Object,	comprising	a	String	address	and	an	Array	of	
Number	coordinates	in	the	form	[lng,	lat]	

	
	
In	addition,	we	have	separate	definitions	for	Reviews	(a	sub-document	of	the	Business	type)	
and	Votes	(a	sub-document	of	Reviews)	
	
We	had	previously	implemented	a	controller	to	add	a	new	business	
(businessesAddOne())using	the	native	MongoDB	driver,	but	we	now	need	to	update	this	
to	use	the	Mongoose	connection.		In	addition,	we	will	change	our	previous	route	defined	as	
POST	/api/businesses/new	to	reflect	the	previous	study	of	URL	architectures	for	RESTful	
APIs.		The	“correct”	form	for	a	route	to	add	a	new	document	to	a	collection	is	POST	
/api/collection_name,	so	we	will	first	update	the	route	to	reflect	this.	
	
Note	that	simply	updating	the	path	in	the	router	definition	will	now	leave	two	
specifications	for	route(‘/businesses’)	–	one	to	handle	a	GET	request	and	invoke	the	
controller	businessesGetAll()	and	another	to	handle	a	POST	request	and	call	controller	
businessesAddOne().		This	is	fine,	but	it	is	a	matter	of	better	style	to	combine	these	into	
a	single	route()	definition	as	seen	in	the	code	box	below.	

B6:	Mongoose	and	Information	Update	 3	

	
File:	B6/api/routes/index.js	
	

...

router
 .route('/businesses')
 .get (businessesController.businessesGetAll)
 .post(businessesController.businessesAddOne);

...	

	
	
	
The	Mongoose	implementation	of	the	businessesAddOne()	controller	is	very	
straightforward	and	is	shown	in	the	code	box	below.		All	we	need	to	do	is	call	the	create()	
method	on	the	Business	model,	passing	the	new	document	to	be	added	as	a	JSON	object,	
along	with	a	callback	function	that	takes	two	parameters	–	an	error	object	populated	if	the	
create()	method	fails,	and	an	object	representing	the	newly	added	document.		The	
callback	function	checks	for	the	err	object,	returning	status	code	400	if	it	is	found,	
otherwise	the	new	document	is	returned	with	code	201	for	a	successful	POST.	
	
	
	

	
File:	B6/api/controllers	/businesses.controllers.js	
	

module.exports.businessesAddOne = function(req, res) {

 Business
 .create({
 // new object to be added
 }
 }, function(err, newBusiness) {
 if (err) {
 console.log("Error creating business");
 res
 .status(400)
 .json(err);
 } else {
 res
 .status(201)
 .json(newBusiness);
 }
 });
}
	

	
	
	

B6:	Mongoose	and	Information	Update	 4	

To	create	the	new	object	to	be	added	we	retrieve	the	POSTed	values	from	the	body	
element	of	the	request	object,	formatting	them	where	required.		String	values	can	be	
directly	assigned,	but	those	which	are	numeric	need	to	be	converted	using	parseInt()	or	
parseFloat()	as	appropriate.		Elements	which	will	not	yet	have	values,	such	as	
review_count	and	reviews,	can	be	directly	assigned	defaults	(which	we	could	also	have	
done	in	the	schema	definition).	
	
The	following	code	box	demonstrates	the	specification	of	the	new	business	object	within	
the	controller.	
	
	

	
File:	B6/api/controllers	/businesses.controllers.js	
	

module.exports.businessesAddOne = function(req, res) {

 Business
 .create({
 name : req.body.name,
 stars : parseInt(req.body.stars),
 city : req.body.city,
 review_count : 0,
 categories : splitArray(req.body.categories),
 reviews : [],
 location : {
 address : req.body.address,
 coordinates : [
 parseFloat(req.body.lng),
 parseFloat(req.body.lat)
]
 }
 ...
	

	
	
	
Note	also	the	use	of	the	helper	function	splitArray(),	which	converts	a	string	containing	
a	list	of	categories	separated	by	the	;	character	into	an	array	of	separate	strings.		We	could	
have	used	the	native	JavaScript	split()	method	here,	except	that,	when	passed	an	empty	
string,	it	would	return	an	array	containing	a	single	empty	element.			Our	alternative	
implementation	tests	for	the	empty	string,	returning	an	empty	array.		The	following	code	
box	presents	the	implementation	of	splitArray().	
		
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 5	

	
File:	B6/api/controllers	/businesses.controllers.js	
	

var splitArray = function(input) {
 var output;
 if (input && input.length > 0) {
 output = input.split(";");
 } else {
 output = [];
 }
 return output;
};
	

	
	
Now	that	the	controller	implementation	is	complete,	we	can	start	the	application	and	use	
Postman	to	generate	data	to	be	sent	as	a	POST	request	to	
http://localhost:3000/api/businesses	as	shown	in	Figure	B6.1	below.	
	
	
	

	
	

Figure	B6.1	Creating	a	new	business	using	Postman	
	
	
	
When	the	request	is	submitted,	the	modified	router	invokes	the	new	controller	so	that	the	
new	business	document	is	added	to	the	collection	and	returned	as	the	JSON	response	to	the	
browser.		Figure	B6.2	illustrates	the	data	returned	from	the	controller.		
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 6	

	
	

Figure	B6.2	New	business	added	
	
	
B6.1.2	Creating	a	new	sub-document	
	
Adding	sub-documents	is	a	slightly	more	complex	operation	than	adding	full	documents	and	
we	will	illustrate	it	by	implementing	a	route	and	controller	to	add	a	review	to	a	business’	
collection.		In	the	interests	of	simplicity,	we	will	also	re-define	the	review	schema	created	in	
Practical	B4,	so	that	fields	we	are	not	going	to	use	in	our	application	are	no	longer	included.		
Our	modified	reviewSchema	is	presented	in	the	following	code	box.		You	should	make	this	
change	in	your	copy	of	the	application.	
	
	

	
File:	B6/api/data/businesses.model.js	
	

...

var reviewSchema = new mongoose.Schema({
 username : String,
 votes : votesSchema,
 text : String,
 stars : Number,
 date : {
 type : Date,
 default : Date.now
 }
});

 ...

	

B6:	Mongoose	and	Information	Update	 7	

First,	we	create	a	route	for	the	new	functionality,	by	specifying	a	POST	action	on	the	existing	
/businesses/:businessID/reviews	path.	
	
	

	
File:	B6/api/routes	/index.js	
	

...

router
 .route('/businesses/:businessID/reviews')
 .get(reviewsController.reviewsGetAll)
 .post(reviewsController.reviewsAddOne);

...	

	
	
	
Now,	with	the	route	in	place,	we	can	implement	the	new	reviewsAddOne()	controller	to	
add	a	review.			
	
In	order	to	add	a	review	as	a	new	sub-document,	we	first	need	to	retrieve	the	parent	
document	so	that	we	can	fetch	the	current	collection	of	reviews.			This	is	already	
implemented	as	the	controller	reviewsGetAll(),	so	the	starting	point	is	to	take	all	of	the	
code	from	that	controller	and	paste	it	into	the	body	of	reviewsAddOne().	
	
This	is	illustrated	by	the	code	box	below	–	note	that	this	includes	the	error	trapping	that	you	
should	have	implemented	from	the	Try	it	now!	exercise	in	Practical	B5.	
	
This	code	performs	error	checking	by	testing	for	an	error	object	and	for	an	empty	
document.		If	neither	of	these	are	found,	it	either	returns	the	array	of	reviews,	or	an	empty	
array	if	the	reviews	element	is	not	present.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 8	

	
File:	B6/api/controllers/reviews.controllers.js	
	

module.exports.reviewsAddOne = function(req, res) {
 var businessID = req.params.businessID;
 console.log("GET reviews for business " +

 businessID);
 Business
 .findById(businessID)
 .select("reviews")
 .exec(function(err, doc) {
 var response = {
 status : 200,
 message : []
 };
 if (err) {
 console.log("Error finding business");
 response.status = 500;
 response.message = err;
 } else if (!doc) {
 response.status = 404;
 response.message = {
 "message" : "Business ID not found" +

 businessID
 };
 } else {
 response.message = doc.reviews ?

 doc.reviews : []
 };
 res
 .status(response.status)
 .json(response.message);
 });
}
	

	
	
We	will	modify	this	by	removing	the	highlighted	code	and	instead	calling	a	new	helper	
function	addReview()	that	accepts	the	request	and	response	objects	together	with	the	
retrieved	document.		This	modification	is	illustrated	in	the	following	code	box.	
	
	
	
	
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 9	

	
File:	B6/api/controllers/reviews.controllers.js	
	

module.exports.reviewsAddOne = function(req, res) {
 var businessID = req.params.businessID;
 console.log("GET reviews for business " +

 businessID);
 Business
 .findById(businessID)
 .select("reviews")
 .exec(function(err, doc) {
 var response = {
 status : 200,
 message : []
 };
 if (err) {
 console.log("Error finding business");
 response.status = 500;
 response.message = err;
 } else if (!doc) {
 response.status = 404;
 response.message = {
 "message" : "Business ID not found" +

 businessID
 };
 };
 if (doc) {
 addReview(req, res, doc);
 } else {
 res
 .status(response.status)
 .json(response.message);
 }
 });
}
	

	
	
	
The	addReview()	function	has	two	tasks	–	first	it	creates	the	new	review	object	by	
retrieving	POSTed	data	from	the	body	element	of	the	request	object	(formatting	it	where	
required)	and	then	pushes	the	new	review	into	the	reviews	array	of	the	parent	document.	
	
Next,	the	save()	method	is	applied	to	the	new	document	to	update	the	collection.		This	
method	takes	a	callback	function	which	has	parameters	containing	the	error	object	
generated	if	the	save	operation	fails	and	a	document	representing	the	updated	business.		As	
we	know	that	the	push()	operation	will	add	the	new	review	to	the	end	of	the	array,	we	
obtain	the	new	review	by	retrieving	the	length	of	the	reviews	array	and	extracting	the	
element	in	the	last	position.		This	new	review	object	is	then	returned	as	the	body	of	the	
response,	with	a	return	code	of	201.		
	

B6:	Mongoose	and	Information	Update	 10	

The	full	implementation	of	the	addReview()	function	is	presented	in	the	following	code	
box.	
	
	

	
File:	B6/api/controllers/reviews.controllers.js	
	

var addReview = function(req, res, thisBusiness) {
 thisBusiness.reviews.push({
 username : req.body.username,
 votes : { "funny":0, "useful":0, "cool":0 },
 text : req.body.text,
 stars : parseInt(req.body.stars)
 });

 thisBusiness.save(function(err, updatedBusiness) {
 var newReviewPosition =

 updatedBusiness.reviews.length - 1;
 var newReview =

 updatedBusiness.reviews[newReviewPosition];
 if (err) {
 res
 .status(500)
 .json(err);
 } else {
 res
 .status(201)
 .json(newReview);
 };
 });
}
	

	
	
As	usual,	we	can	test	the	operation	of	the	new	POST	route	by	providing	the	URL	of	the	
endpoint	to	Postman	and	providing	some	data	representing	a	new	review,	as	illustrated	by	
Figure	B6.3.		Note	that	the	only	values	we	need	to	provide	are	those	for	username,	text	(the	
text	of	the	review)	and	stars	(the	rating	in	the	range	0-5).		All	other	values	are	either	
generated	by	the	addReview()	function	(votes)	or	will	have	default	values	automatically	
provided	according	to	the	schema	definition	(date).	
	
	
	
	
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 11	

	
	

Figure	B6.3	Adding	a	review	with	Postman	
	
	
	
If	the	review	has	been	added	successfully,	you	should	see	the	response	object	describing	
the	new	review	displayed	in	the	Body	section	of	Postman,	as	shown	in	Figure	B6.4	below.	
	
	
	

	
	

Figure	B6.4	New	review	added	
	
	
	
	

B6:	Mongoose	and	Information	Update	 12	

Try	it	now!	
	
Verify	that	the	new	endpoints	are	working	properly	by	running	the	application	and		
	
i)	presenting	the	URL	http://localhost:3000/api/businesses/12345	to	a	web	browser	(where	
12345	is	the	_id	of	your	newly-added	business.	
	
ii)	show	the	reviews	of	that	business	by	the	URL	
http://localhost:3000/api/businesses/12345/reviews	
	
iii)	copy	the	_id	of	a	review	object	from	the	browser	window	and	add	it	to	the	URL	to	give	
the	URL	http://localhost:3000/api/businesses/12345/reviews/54321	(where	54321	is	the	
_id	of	the	review	element).		
	

B6.2	Updating	database	content		
	
So	far	in	our	sample	application,	we	have	only	made	use	of	the	familiar	GET	and	POST	
methods	for	retrieving	and	creating	content.		However,	as	explained	in	Practical	B4,	the	
HTTP	specification	provides	additional	methods	to	indicate	that	we	want	to	modify	or	delete	
existing	content.		In	this	section,	we	will	implement	PUT	requests	in	order	to	edit	a	
previously	created	document.	
	
B6.2.1	Updating	an	existing	document	
	
First,	we	need	to	create	the	routes	for	the	new	functionality	by	adding	PUT	specifications	
for	the	/businesses/:businessID		endpoint	to	update	details	of	a	specific	business	and	
/businesses/:businessID/reviews/:reviewID	to	update	details	of	a	specific	review.		This	is	
presented	in	the	code	box	below.	
	
	

	
File:	B6/api/routes	/index.js	
	

...
router
 .route('/businesses/:businessID')
 .get (businessesController.businessesGetOne)
 .put(businessesController.businessesUpdateOne);
...

router
 .route('/businesses/:businessID/reviews/:reviewID')
 .get(reviewsController.reviewsGetOne)
 .put(reviewsController.reviewsUpdateOne);
...

B6:	Mongoose	and	Information	Update	 13	

Developing	an	update	controller	is	a	four-stage	process	as	follows	
	

i) find	the	information	about	the	specific	document	to	create	an	instance	of	the	
model	
	

ii) update	the	data	in	the	instance	of	the	model	
	

iii) save	the	instance	of	the	model	to	update	the	database	
	

iv) return	a	response	to	the	requester.		
	
	
The	first	stage	is	to	retrieve	the	data	from	a	specific	document	representing	a	business,	so	
we	can	simply	copy	and	paste	the	code	from	the	businessesGetOne()	controller.		To	this	
code,	we	add	an	if	statement	around	the	final	res	command	so	that,	if	an	error	has	
occurred,	we	immediately	return	the	response	and	abort	the	update	operation.		The	
following	code	box	illustrates	the	development	of	the	controller	to	this	point.	
	
	

	
File:	B6/api/controllers/businesses.controllers.js	
	

module.exports.businessesUpdateOne = function(req, res) {
 var businessID = req.params.businessID;
 console.log("GET business " + businessID);
 Business
 .findById(businessID)
 .exec(function(err, doc) {
 var response = {
 status : 200,
 message : doc
 }
 if (err) {
 console.log("Error finding business")
 response.status = 500;
 response.message = err;
 } else if (!doc) {
 response.status = 404;
 response.message = {

 "message" : "Business ID not found"
 };

 }
 console.log("Found business " + businessID);
 if (response.status != 200) {
 res
 .status(response.status)
 .json(response.message);
 };
 });
};

B6:	Mongoose	and	Information	Update	 14	

The	second	stage	updates	the	data	in	the	instance	of	the	model,	held	in	the	doc	object	
specified	in	the	parameter	of	the	exec()	callback	function.		As	we	are	only	updating	the	
main	document	and	not	associated	sub-documents	in	this	operation,	we	add	a	line	of	code	
to	exclude	the	reviews	element	from	the	findById()	operation	as	follows.	
	
	

	
File:	B6/api/controllers/businesses.controllers.js	
	

module.exports.businessesUpdateOne = function(req, res) {
 var businessID = req.params.businessID;
 console.log("GET business " + businessID);
 Business
 .findById(businessID)
 .select(“-reviews”)
 .exec(function(err, doc) {

 ...

	
	
Now,	we	can	update	the	model	instance	by	using	the	value	from	the	body	element	of	the	
request	object,	just	as	we	did	earlier	in	the	businessesAddOne()	controller.	The	
following	code	box	illustrates	this	portion	of	the	new	controller.	
	
	

	
File:	B6/api/controllers/businesses.controllers.js	
	

module.exports.businessesUpdateOne = function(req, res) {

 ...
 if (response.status != 200) {
 res
 .status(response.status)
 .json(response.message);
 } else {
 doc.name = req.body.name;
 doc.stars = parseInt(req.body.stars);
 doc.city = req.body.city;
 doc.categories =

 splitArray(req.body.categories);
 doc.location = {
 address : req.body.address,
 coordinates : [
 parseFloat(req.body.lng),
 parseFloat(req.body.lat)
]
 }
 }
 ...

B6:	Mongoose	and	Information	Update	 15	

The	third	step	is	to	save	the	instance	of	the	model	back	to	MongoDB.		As	seen	earlier,	the	
save()	method	takes	two	parameters,	an	error	object	if	the	update	operation	fails	and	an	
object	holding	the	updated	document.	This	is	illustrated	by	the	highlighted	content	in	the	
following	code	box.	
	
	

	
File:	B6/api/controllers/businesses.controllers.js	
	

module.exports.businessesUpdateOne = function(req, res) {

 ...
 } else {
 doc.name = req.body.name;
 doc.stars = parseInt(req.body.stars);
 doc.city = req.body.city;
 doc.categories =

 splitArray(req.body.categories);
 doc.location = {
 address : req.body.address,
 coordinates : [
 parseFloat(req.body.lng),
 parseFloat(req.body.lat)
]
 };
 doc.save(function(err, updatedBusiness) {
 if (err) {

 } else {

 };
 });
 ...

	
	
Finally,	in	the	fourth	step,	we	populate	the	if	statement	by	providing	the	response.		If	the	
Mongoose	save()	operation	fails,	we	return	an	error	with	a	500	code,	but	if	it	is	successful	
then	the	REST	standard	suggests	that	we	return	a	204	code	with	an	empty	response	body	as	
shown	in	the	code	box	below.	
	
	
	
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 16	

	
File:	B6/api/controllers/businesses.controllers.js	
	

module.exports.businessesUpdateOne = function(req, res) {

 ...
 doc.save(function(err, updatedBusiness) {
 if (err) {
 res
 .status(500)
 .json(err);
 } else {
 res
 .status(204)
 .json();
 }
 });
 ...

	
	
We	can	test	the	new	controller	by	presenting	a	PUT	request	to	the	URL	
http://localhost:3000/api/businesses/12345	to	Postman	(where	12345	is	the	_id	of	a	
business	in	your	database)	and	providing	values	for	the	various	parameters.		This	is	
illustrated	by	Figure	B6.5	below,	where	we	provide	updated	entries	for	name,	city	and	
categories.	
	
	

	
	

Figure	B6.5	Updating	a	business	
	
	
	
	

B6:	Mongoose	and	Information	Update	 17	

The	effect	of	the	PUT	request	can	be	seen	by	making	a	GET	request	to	the	same	URL,	
retrieving	the	current	values	from	the	database	and	verifying	that	the	update	has	been	
successfully	carried	out.	This	is	shown	in	Figure	B6.6,	below.	
	
	

	
	

Figure	B6.6	Business	updated	
	
	
	
B6.2.2	Updating	an	existing	sub-document	
	
Updating	a	sub-document	is	simply	a	combination	of	techniques	we	have	already	used,	
where	the	key	point	to	remember	is	that	sub-documents	can	only	be	accessed	by	going	
through	their	parent.		i.e.	we	need	to	retrieve	and	save()	the	top-level	document,	while	
editing	the	required	attributes	of	the	sub-document.	
	
The	code	for	this	controller	is	longer	than	any	we	have	seen	so	far,	but	by	breaking	it	into	its	
component	parts	we	can	recognise	how	it	combines	elements	previously	used.	
	
First,	we	retrieve	the	document	containing	the	business	specified	in	the	businessID	
parameter	defined	as	part	of	the	URL.		This	uses	the	code	previously	seen	in	
reviewsGetOne()	as	shown	in	the	code	box	below.	
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 18	

	
File:	B6/api/controllers/reviews.controllers.js	
	

module.exports.reviewsUpdateOne = function(req, res) {
 var businessID = req.params.businessID;
 var reviewID = req.params.reviewID;
 console.log('PUT reviewID ' + reviewID +

 ' for businessID ' + businessID);

 Business
 .findById(businessID)
 .select('reviews')
 .exec(function(err, thisBusiness) {
 var thisReview;
 var response = {
 status : 200,
 message : {}
 };
 if (err) {
 console.log("Error finding business");
 response.status = 500;
 response.message = err;
 } else if(!thisBusiness) {
 console.log("Business ID not found", id);
 response.status = 404;
 response.message = {
 "message" : "Business ID not found " + id
 };
 } else {

 // get review and edit

 }

)};
};

	
	
Next,	we	extract	the	review	to	be	edited	by	using	the	id()	method	and	passing	the	
reviewID	supplied	in	the	URL	as	the	parameter	to	the	method.		Again,	the	appropriate	
code	can	be	taken	from	the	reviewsGetOne() controller	
	
	
	
	
	
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 19	

	
File:	B6/api/controllers/reviews.controllers.js	
	

module.exports.reviewsUpdateOne = function(req, res) {

...

 } else {

 // get review and edit
 thisReview = thisBusiness.reviews.id(reviewID);
 if (!thisReview) {
 response.status = 404;
 response.message = {
 "message" : "Review ID not found " + reviewId
 };
 }

 // now check for an error and save

 }

)};
};

	
	
Finally,	we	check	for	an	error	and	if	all	is	clear,	we	update	the	review	with	the	new	values	
and	issue	the	save()	command	on	the	parent	document.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

B6:	Mongoose	and	Information	Update	 20	

	
File:	B6/api/controllers/reviews.controllers.js	
	

module.exports.reviewsUpdateOne = function(req, res) {

...

 // now check for an error and save

 if (response.status !== 200) {
 res
 .status(response.status)
 .json(response.message);
 } else {
 thisReview.username = req.body.username;
 thisReview.text = req.body.text;
 thisReview.stars = parseInt(req.body.stars);
 doc.save(function(err, updatedBusiness) {
 if (err) {
 res
 .status(500)
 .json(err);
 } else {
 res
 .status(204)
 .json();
 }
 });
 }
 });
}

	
	
	
Try	it	now!	
	
Use	Postman	to	update	one	of	the	review	elements	for	a	business	and	verify	that	your	new	
controller	is	working	properly.		
	
	
	
	

B6.3	Deleting	database	content		
	
To	complete	our	API	for	the	sample	WeMeanBusiness	application,	we	will	add	routes	and	
controllers	to	delete	documents	and	sub-documents	from	the	database.	First,	as	usual,	we	
will	add	the	routes	to	invoke	the	new	controllers	by	editing	the	routes/index.js	file	as	
shown	in	the	following	code	box.	
	

B6:	Mongoose	and	Information	Update	 21	

	
File:	B6/api/routes	/index.js	
	

...
router
 .route('/businesses/:businessID')
 .get(businessesController.businessesGetOne)
 .put(businessesController.businessesUpdateOne)
 .delete(businessesController.businessesDeleteOne);
...

router
 .route('/businesses/:businessID/reviews/:reviewID')
 .get(reviewsController.reviewsGetOne)
 .put(reviewsController.reviewsUpdateOne)
 .delete(reviewsController.reviewsDeleteOne);
...

	
	
	
B6.3.1	Deleting	a	top-level	document	
	
Deleting	an	entire	document	is	made	very	easy	by	the	availability	of	the	Mongoose	method	
findByIdAndRemove()	that	takes	an	_id	value	as	a	parameter	and	deletes	that	
document	and	any	sub-documents	contained	within	it.		By	convention,	a	successful	delete	
returns	status	code	204	and	an	empty	response	body	–	as	shown	in	the	code	box	below.	
	
	

	
File:	B6/api/controllers/businesses.controllers.js	
	

module.exports.businessesDeleteOne = function(req, res) {
 var businessID = req.params.businessID;

 Business
 .findByIdAndRemove(businessID)
 .exec(function(err, thisBusiness) {
 if (err) {
 res
 .status(404)
 .json(err);
 } else {
 console.log("Business " + businessID

 + " deleted");
 res
 .status(204)
 .json();
 }
 })
};

B6:	Mongoose	and	Information	Update	 22	

B6.3.2	Deleting	a	sub-document	
	
The	controller	to	delete	a	sub-document	is	a	little	longer	than	that	to	delete	a	top-level	
document,	but	fortunately	we	have	almost	all	of	it	already	in	our	reviewsUpdateOne()	
controller	developed	earlier.	
	
Copy	the	entire	body	of	the	reviewsUpdateOne()	controller	into	reviewsDeleteOne()	
and	then	see	the	code	box	below	which	identifies	the	change	that	you	need	to	make	
	
	

	
File:	B6/api/controllers/reviews.controllers.js	
	

module.exports.reviewsDeleteOne = function(req, res) {

...

 // now check for an error and save

 if (response.status !== 200) {udeny
 res
 .status(response.status)
 .json(response.message);
 } else {

 // REMOVE THESE LINES
 //thisReview.username = req.body.username;
 //thisReview.text = req.body.text;
 //thisReview.stars = parseInt(req.body.stars);

 // AND ADD THIS ONE

 doc.reviews.id(reviewID).remove();

 doc.save(function(err, updatedBusiness) {
 if (err) {
 res
 .status(500)
 .json(err);
 } else {
 res
 .status(204)
 .json();
 }
 });
 }
 });
}

	
	
All	of	the	code	to	find	the	parent	document	containing	the	business	information	and	to	
perform	the	error	trapping	can	stay	exactly	as	was	specified	in	reviewsUpdateOne().		
All	that	we	need	to	do	is	replace	the	code	that	updates	the	review	values	by	a	single	line	of	

B6:	Mongoose	and	Information	Update	 23	

code	that	uses	the	id()	method	to	locate	the	review	in	question	and	chains	the	remove()	
method	to	delete	it	from	the	collection.	Once	the	review	has	been	removed,	we	simply	
save()	the	parent	document	and	return	the	appropriate	HTTP	response	code	as	usual.	
	
	
Try	it	now!	
	
Verify	that	the	new	endpoints	are	correctly	implemented	by	using	Postman	to	delete	a	
review	from	a	specific	business	and	then	to	delete	the	business	completely	from	the	
database	
	
	

